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An Analysis of the Stress Wave in Solids (SWIS)
Finite Element Code

KAREN J.L. FARAN

INTRODUCTION

The ability to analyze wave propagation for geometrically complex circumstances is important in
calculating ground motion caused by earthquakes, exnlosions or other sources of seisinic waves.
Analytical models derived using separation of variables methods are limited in this area because they
can only solve problems with sirnpie geometry. For more complex situations, it is necessary to use
finite elein< nt or finite difference scheines.

in 1973, Frazier (1974) developed the finite element code Stress Waves In Solids, or SWIS. It has
been used to solve several challenging problems because it includices a variety of seismic propagation
modes, including body waves, interface waves and diffraction. SV/IS is able to simulate a number of
seismic pttznomena. Some examples are:

1. Explosions in geologically complex formations.

2. Spontaneous earthquake ruptures and near-field ground motions.
3. Disturbances in lateraily varying earth models.

4. Wave propagation through burisd and surface structures.

SWISis aversatile code in that it can solve probiems inone, t voor three spzual dunensions ineither
Cartesian or cylindrical coordinates. Although the code assumes lircar elasticity and isotropic
materials, it is possible to splve problems in regions containing up o ninz material types. The grid
generator has a feature in which the grid size may be progressively expanded at 10% per zone to
simulate a non-reflecting boundary. Finally, SWIS can solve rither static, diffusion or wave
propagation problems.

This report describes how to use the SWIS code, which was upgraded at the Center for Seismic
Studies in 1985. (The upgrade was annotated in the code.) First, it desc1 bes how to create the input
file. A discussion of the output files follow. Finally, exariples of how SWI was used to solve three
wave propagation problems are discussed.

PROBLEM INITIALIZATION

The numerical zlgorithm in the SWIS code « dntains features from hoth finite clement and finite
difference methods. The continuum is divided, using sp: iial interpolation functions and a virtual work
principle, but she sequence is modeled after Langrangia.1finite ditference shock codes. Also, the SWIS
code directly computes strain rate, stress and restoring f. tces instead of developing the conventional
finite element stiffness matrix.

To define a stress wave problem for the SWIS code, the fcliowing quantities are required (Frazier
1974, pp 11-12.¢




1. Coordinate system designation:
a. Number of spatial dimensions to appear in the grid.
b. Orthogonal curvilinear coordinate system (o be employed in the calculations.
2. Grid configuration: Although most grids can be produced using the grid generator in the code,
it is possible to supersede the generator in local regions. Grid configuration is described by:
a. Spatial location of the node points.
b. Node map to associate nodes with elements
3. Boundary conditions and applied forces: Each directional component of each node point is
assigned one of the following constraint conditions:
a. Unconstrained, with applied body force or surface traction to form an aray of nodal forces.
b. Constrained, with nodal displacement components constrained to follow a specified time
history.
4. Material properties, described by:
a. Density,
b. Constitutive properties (P-wave and S-wave velocities).
c. Dimensionless coefficient to regulate the damping of spurious high frequency numerical
oscillations.
S. Time stepping data:
a. Start and finish times.
b. Time step, At.
6. Starting conditions:
a. Velocity and displacement with respect to some reference frame,
b. Stress at the centroid of each element.
7. Presentation of results:
a. Element and node numbers for which results are to be printed at designated time intervals.
b. Printer plots for displaying results at designated time intervals.
c. Time histories of individual node points.
d. Pint files producing graphical displays of the computed results.

FILES USED BY SWIS

For both input and output files, SWIS uses a two part code for its file names. The first half is the
lette: “u” followed by a one or two digit code for the Fortran unit number used in SWIS. The second
half consists of a two or three letter description of the contents. Thus, file “u15in” is designated as unit
15 in SWIS, and is used as the input file, and file “u8hn” is the name of unit 8 and contains the time
history for selected podes.

Input file
To run SWIS, create an ASCII file, for unit 15 titled ul5in. The format of this file and variable
definitions are given in Appendix A.

Output files

SWIS produces eight ASCII files that present computed displacement and velocity results in
different formats. By setting variables in input file ul5in to appropriate values, it is possible to either
suppress printing or set the time intervals for recording.

Each file can be divided into several blocks of information. A descriptive summary and format
outline for each of the output files is given below. Format A indicates a character string, I indicates
an integer and E represents exponential format.




1. u8hn provides displacement time histor:es for specified nedes at selected time intervals.

Biock 1:
Block 2:
Block 3:

Block 4:
Bluck 5:

Problem description (A).

Grid generation descripuon (A).

a. Number of time sicps (16).

b. Number of degrees of freedom (16).

c¢. Number of ncdes with recorded histories (16,

d. Time step (E12.4,.

No je numbers for plot history (1117).

Displacements for each listed node, for each time interval (8E12.4).

2. u9he contains time histories of element stress and displacement. Block 5 is printed for each
nth iteration (set in input file ul5in).

Blozk t:
Block 2:
Block 3:

Block 4:
Biock 5:

Problem description (A).

Grid generation description (A).

a. Nuinber of time steps (I6).

b. Number of degrees of freedom aad stres- components (I6).

¢. Number of time history elements (I6).

d. Time stcp (E12.4).

Element numbers for time histories (1117).

Displacements and stress components for each element (8E1..4).

3. ul0g contains .aformation about the deformed grid. Block 6 is printed only if a force greate - than
0.0001 N is applied to the node. If time history nodes ar. identified, both blocks 7 and 8 are printed;
if no nodes are identified, only block 8 is printed. Blocks % -12 are printed every nth iteration (set in
inpui file ul5in).

Block I:
Block 2:
Block 3:

Block 4:

Block 5:

Block 6:

Biock 7:

Block 8:

Blow: 9:
Block 10:

Block 11:
Block 12:

Prollem description (A).

Grid generation description (A).

a. Nuimber of spatial dimensions {ndimt} (I7).

b. 2ndimt (17),

c. Total number of elements (17).

d. Number cf diffcrent material types (I7;.

Coordinates e used in grid generation mapping (8E12.4).
a. P-wave vel.. itv (E12.4).

b. S-wave veloe 7 (EE12.4).

c. Density (E12.4).

a. Digit used to separate data (I6).

b. Node coordinates (8E12.4).

a. Cigit used to separate data (=10) (16).

b. Node coordinates of nodes wit! *:me histories (8E12.4).
a. Digit used to separate data (=999) (16).

b. Mode coordinates of node { (8E12.4).

Time {E12.4).

a, 2ndimt (17),

b. Material number (I6).

Node coordinutes of lowest node numbes 11 elemenis (8E12.4).
(Displaceraent)+(velocity y*(damping) of lowest node number inelements (8E12.4).




4. ul lvn supplies data for plotting node vectors. Block 5 is printed for every nth iteration.

Block 1: Problem description (A).
Block 2: Grid generation description (A).
Block 3: a. Number of spatial dimensions (17).
b, 2number degrees of freedom an.
c. Total number of nodes (17).
Biock 4: a. Integer code used for specifying nodal vonstraints (16".
b. Node coordinates (3E12.4).
Block 5: a. Time advance (E12.4).
b. Displacements and velocities (8E12.4).

5. ul2ve is supposed to provide data for plotting element vectors. Currently, no information is sent
to this file.

6. ul3In provides displacement and velocity information for specified lines of nodes. Block 4 is
repeated for each line of nodes. Block 5 is printed for every nth iteration of the program (set in file
ul5in). In Block 5, the items b, ¢ and d are printed for eac." line of nodes. Furthermore, displacement
and velocities (item d) are printed for each node in the lire.

Block 1: Problem description (A).
Block 2: Grid generation description (A).
Block 3: a. Number of dimensions (17).
b. (Number of degrees of freedom)*2 (17).
¢. ifumber of node lin=s (I7).
Block 4: a. Node line number (I7).
b. Number of nodes (17).
c. Node positions (8E12.4).
Block 5: a. Time advance (E12.4).
b. Node line number.
¢. Number of nodes in line.
d. Displacements awd veloci:ies for each node (8E12.4).

7. ul4div provides the divergence and curl information of the nodes specified in file ul3ln.
Informaticn is sent to ul4div only if information is requested for lines of nodes, i.e., if data are sent
to file ui3in. The output file has only one output format ble k, which is printed for each nth iteration
and for each specified line of nodes. Currently, ut4div is only printed for problems with two spatial
dimensions and with a rectangular mesh,

Block 1: a. Node line number (17).
b. Number of nodes in line (I7).
c. Divergence and curl for each node in the line (8E12.4).

8. ul6u:i ;ummarizes analysis description, provides sum:mary of control parameters, grid defini-
tion, materiaul definition, node constraints and output specifications. If so desired, ul 6out also contains
the computed results for specified time intervals. The organization of this file is self-evident. An
example follows.




Example of ulGout
1. ANALYSIS DESCRIPTION

ulSin.1d.2, one-dim prob, dt=0,01

2, CONTROL PARAMETERS

- Spatial Representation:
Number of Space Dimensions usad .............
Number of Degrees of Freedom psr Node .......
Number of Stress COmponents ........oeooesevee
Solution Coordinate Designation .............
Order of Fourier Intezpoletion in Azimuth ...

OO

- Time Control:
Number of Time Dexiviatives ................. 2
Time SteP .v.ccvnvtrvenessrcnsonenrassocorsaas 0.0100
Starting TiMe ......ceiveeccnrecnsnsssrncnnes 0.0000
Ultimate Time ......c.cevevnoncsesnssoccsanes 2,0000

3. GRID DEFINITION
~ Grid Genexation, Designator MAPYZ =~ 2

Regular grid, each element 0.05 meter long
grid size: NEI 100 NEJ 1 NEK 1
producing: 100 elements and 101 nodes
grid growth to element: IS 0 J5 0 XS O
grid growth begins at: IG 0 J6 O X6 O
corner nodes of the grid exterior:
0.00 10.00

4. MATERIAL DEFINITION

- Number of Different Constituents 1
MAT DENS P-VEL S-VEL POIS DAMP
1 2.7000 6.3000 3.1000 0.3403 0.0000
- Material Numbers Assigned to Individual Elements
Lines of Dats 0

5. NODE CONSTRAINTS
- Lines of Constraint Data 2
NODE IDNODE SPECIFIED CONSTRAINTS
1 1 0.0000 0.0000 0.0000 0 1]
101 0 1.0000 0.0000 0.0000 0 0

6. OUTPUT SPECIFICATIONS

Print Results at Interval .........
Plot Deformed Grid at Intexval ....
Plot Node Vectors at Interval .....
Plot Element Vectors at Intexval ..
Plot { 0) Node Lines at Interval .. 0
Plot Time Histories of ( 5) Nodes:

21 41 61 81 101
- Plot Time Histories of ( 0) Elements:

[-2-2-¥-]

NODE F T P BOUND INITIALIZATION SUMMARY RPTHM
O YR TYPE ARYA
‘e RPI 1 SPECIFIED CONSTRAINTS NODE COORDINATES MASS NI PT

o CEN 12 GNE
E T123 sl §2 s3 Yl Y2 Y3 ET
1100001 0.000 0.000 0.000 0.00 0.00 0.00 0.131091
101202000 1.000 0.000 0.000 10.00 0.00 0.00 0.14
MOTION AT [IME = 0.0100 (time step =~ 1)

ODE BND ...........DISPLACEMENT.......ccvvs oo.....VELOCITY COMPONENTS........ ...
21 0 0.0000E400 0.0000E+00 0.0000E400 0.0000E+00 0.0000E+00 0.0C00E+00 O.
41 0 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O.
61 0 0.0000e+400 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 O.
81 0 0.0000E+400 0.0000E+00 0.0000E400 0.0000E+00 0.0000E+00 0.0000E+00 O,

101 0 0.7407£-03 0.0000E+00 0.0000E+00 0.7407E-01 0.0000E+00 0.0000E+00 O.
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SELECTED EXAMPLES

To test the SWIS code, stress waves were calculated for three wave propagation problems: one-
dimensional longitudinal displacement subjected to impulse loading; a cantilever be<m with an
impulse load applied along the axis, at the unsupported end; and two-dimensional wave propagation
with a vertical impulse force (Lamb’s problem). The input files and results for these test calculations
follow.

Example 1: One-dimensional longitudinal displacement

Analytical solution

The first problem considered was that of one-dimensional stress longitudinal displacement, i.e.,
only displacements in the x-direction were allowed. This situation describes the wave propagation in
the middle of a large piece of material, rigidly constrained at one face and with a uniform pressure
applied impulsively at the other (see Fig. 1). The material is allowed to move only in the direction of
the applied force, and as a result, all other displacements vanish. The equations of motion, initial
conditions and boundary conditions reduce to the following one-dimensiona! problem:

u _ 1 m
ax? cf a?
initial conditions: ulx, 0) =2 (x,0) = 0
ot
boundary conditions: u(0,2)=0

P(l,t)=P8(t)

whereu = displacement
t =time

X = position along beam
¢; = [(A+p)/p) 122, the longitudinal or P-wave velocity
P = magnitude of the _.onstant pressure
8(t) = delta function
£ = length of the beam.

Figure 1. Geometry for example 1, one-dimensional
stress, longitudinal displacement.

p = material density.

The solution to eq 1 can be found by either a separation of variables or by using transforms. The
latter technique gives the solution as (Graff 1975, pp. 91-94)




u(x,t)=5’-c’TRH<: -(%fL ~-H< '"(_t%i)'>}“

{H«-
13 ]

>-H<;_(_3£ﬂl>}+
€1

’H<r-M>—H<:_w>}-m] ?
Ct Cy

where H <t -a > is the Heaviside function, defined such that

H<t-a>={°"<a

1, t>a
Equation 2 defines a square wave propagating between the two ends of the material, with wave
speed equal to the longitudinal wave speed.

Input file

The mesh created for this example was a string of 201 nodes, lined in the x-direction, which created
200 line elements (Fig. 2). Since displacement is restricted to only the x-direction, it is unnecessary
to create a three-dimensional mesh. If the material is aluminum, values for element length, time step,
material properties, magnitude of the impulse and dimensions of the region are as follows:

time step (Az): DT =0.005 (ms)

density (p): DENS(1) = 2.70 (Mg/m3)

P-wave velocity (¢;): VP(1) =6.30 (km/s)

S-wave velocity (c,): VS(1) = 3.10 (km/s)

damping: DAMP(1)=0.0

impulse force (P): VSPEC(2,1)=1.0(N)

length of region (£): YGRIIX1,2)-YGRID(1,1) = 10.0 (m).
123456 201

YA oooo-..‘-.-.m-.--—”m

Figure 2. Finite element mesh for one-dimensional stress problem (200 ele-
ments, 201 nodes).

For this problem, node 1 was assigned zero displacement to meet the fixed end condition (line 13
of the following file). A unitimpulsive force was applied tothe free end of the beam, node 201, at time
t=0(line 14). Finally, records of the displacements were made for five nodes along the beam: 41, 81,
121, 161 and 201 (line 17). The input file for this example follows (entries correspond to Appendix A).

Enty Line

A 1 Test input, one-dim prob, dr=0.005 ms

B 2 1 1 o o0

Cc 3 2 0005 0 10

D 4  Regular grid, each element 0.05 m long

E 5 200 ¢ 0 2 2 0 0 O0O0 OO
F 6 00 10




o
5
a

270 6.30 3.10 0.0
11
12
13
14
15
16
17
18

N
ouo»-g—-uo-awoo
o
oo
o O

O - O
(=4
[« I =R =]
[==]

81 121 161 201

<cwuwm woZrm-—-mE
SxoooqI

oﬁooo-—-

l x=10 - \ ! | |=="°

0
®
Q
g | I T S T |
§ 8
£ .
ST R B B e
2 3
8 &
§ ymd S-WL z=4
L s
=
.~_ﬂ n xm2 ..——ﬂ—.—.w—-—L. r=2
| 1U 1 1 ) : L L + L .
-0 2 4 6 8 10 0 2 4 6 8 10
Time, ms Time, ms
a. Analytical solution. b. SWIS (dx = 0.05 m; dt = 0.005 s).

Figure 3. Comparison of analytical and SWIS waveforms calculated for example 1.

Comparison of output to theory

The disturbance for the given parameters should be a square wave reflecting between the two ends
of thematerial, at the longitudinal velocity of 6.3 km/s. Figure 3 shows that the expected and calculated
waveforms match.

One of the shortcomings of the SWIS solution is the large, unrealistic amount of ringing in the
results, Much of this oscillation has been eliminated from previous runs by decreasing both the element
size and time step (Fig. 4). It is expected that the solution could be further refined by additional
reductions in the spatial and time increments.

Another possible way of reducing the oscillations and removing the high frequency noise in the
figures would be to introduce a damping factor with the material parameters, Figure 5 shows that a
damping factor of 0.2 significantly removes the oscillations in Figure 3b, and the solution using this
damping factor closely resembles the analytical solution. This method may have adverse effects on
the solution, however, in that the higher damping factors change the form of the calculated waves. As
seen in Figure 5, the solutions obtained using non-zero damping factors have slightly rounded comners
and finite rise times. However, the damping factors considered did not seem to affect the amplitude
of the wave, nor did they change the velocities at which the disturbances travel.




=10
x=10 rh———m T

Horizontal Displacements
8
[
)
Horizontal Displacemenis
1]
q
i
o

T

= o P P | 22

-

0 4 8 0 4 8
Time, ms Time, ms
a.dx=0.10m,dt=0.0Is. b.dx =0.10 m, dt = 0.005 s.

-m z=10

__I_\._\__,.__f"\.._. z=4

Horizontal Displacements
T
8
I
o

Time, ms
¢.dx = 0.05m, dt = 0.005 s.

Figure 4. Comparison of different space and time steps for example 1. The above plots
use the same vertical scale.

Example 2: Cantilever beam

Analytical solution

The second example considered was that of a wave propagating along a long and very thin rod, or
one-dimensional stress where the longitudinal normal stress 6, is a function of position along the rod
and time only (Fig. 6). All other stresses vanish, and elements are allowed to deform in the transverse
direction. The equations of motion reduce to

a2 .
ox Cp ot




*-—'L__J———L z=10 m z=10
~j_——11___JJ___\\ z=

r=6 =6

Horizontal Displacements
Horizontal Displacements
i

0 4 8 0 4 8
Time, ms Time, ms
a. Damping = 0.2. b. Damping = 04.
5 \ f \ | #= 10

.._F'_—\_\__/J_—\\ z=8

) __l'_\._\_,__.f_\_ r=4

Horizontal Displacements
T
8
1l
(Y

Time, ms
c. Damping = 0.6,

Figure 5. Damping effects on one-dimensional model (example 1). The above plots
use the same vertical scale (dx = 0.05; dt = 0.005 s).

| P&

|x-axis
|L 3
X0 x=10

Figure 6. Geometry of wave propagation for example
2, a cantilevered beam.
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whenecg = %-, the beam velocity
E = p{(3A+21)/(A+1)], Young’s modulus of elasticity
p = material density.

With no initial displacements nor velocities along the beam, and boundary conditions of u(0,t) =
0and P(¢,7) = P&(z), the solution to this problem is almost identical to the previous problem. The only
difference between the two solutions is the velocity at which the wave propagates through the beam
(cp <cp). Manipulation of the relations between the material constants yield the following relation for
¢ in terms of the longitudinal and transverse velocities

cp = 2c? [(1.5 012—203)/(012—0?],. @
Laplace transform techniques (Graff 1975, pp. 91-94) give the solution to the problem as
u (x, t) =

P
pcy (4

H<t—([—:-fl>—H<t—§-l—t{)->}-—
v

{H<t—.(§_l:i).>_11<t__3_l_+i).>l+
Ch Cb

H<t—i{_—x)->—H<t—(5_{;i).>}—...]
b

Co 5

whereu = displacement

P = magnitude of the load

p = material density

¢, = beam velocity

£ = length of the beam

t = time

x = position along beain
H<t-a> = Heaviside step function, defined in the previous example.

The solution to eq 3 is a square wave propagating between the ends of the material at the beam
velocity. Because the beam velocity ¢, is less than the longitudinal velocity ¢, this wave travels slower
than the wave in example 1. The amplitude of the resulting wave, however, is larger than that of the
previous example. A plot of displacement versus time, for five points on the beam, is given in Figure 8a.

Input file

This example differs from the longitudinal displacement problem because the nodes must be
allowedto move in the transverse directions (because of the Poisson effect). A one-dimensional mesh
is not capable of handling these displacements, and'so either atwo- or three-dimensional grid must be
used. Toreduce computation time, atwo-dimensional mesh was created (Fig. 7) tomodel an aluminum
beam. The parameters for this example follow.

time step (Ar): DT =0.005 (ms)

density (p): DENS(1) =2.70 (Mg/m?)
P-wave velocity (c,): VP(1)=6.30 (km/s)

11




S-wave velocity (c,): VS8(1) =3.10 (km/s)

beam velocity (¢, ¢y =3.1 (km/s)

damping: DAMP(1)=0.0

impulse force (P): VSPEC(2,1)= 1.0 (N)

length of beam (¢£): YGRID(1,2) - YGRID(1,1) = 10.0 (m).
{0,40.05) (10,40.05)

o o o o 603-e— PS5 (1)

403
201 L 202 | 205 1 204 205 400
202 * o o @ 402 P5(t)
1 oaaoe o o o o @ 201 -— P§(t)

(0,-0.05) (10,-0.05)

Figure7.Finite element mesh of beamproblem (400 elements, 603 nodes).
Impulse force applied at nodes 201, 402 and 603; nodes 1, 202 and 403

For this example, the displacements for the nodes atx=0, nodes 1, 202 and 403, were setidentically
equal to zero (lines 13, 15 and 17 of the following input file). At the free end of the beam, aunitimpulse
was applied in the direction of the beam axis (lines 14, 16 and 18 of the following input file), The
longitudinal displacements were recorded for five nodes located on the center fiber of the beam (line
22) (entries correspond to Appendix A).

Entry Line

A 1 2-d model of beam, dr=0.005 ms

B 2 2 2 0 0

C 3 2 0005 0 10

D 4  Regularelements, 0.05 x 0.05 m long

E 5 200 2 0 2 4 0 0 0 0 0 0

F 6 00 -005 100 005 0 005 100 0.5

G 7 0

I 8 0

K 9 1

L 10 1 270 630 310 00

M 11 0

o 12 6

P 13 1 11 0 0 0 1
14 201 00 10 0 0 0 1
15 202 11 0 0 0 1
16 402 00 10 O 0 0 1
17 403 11 0 0 0 1
18 603 00 10 0 0 0 1

R 19 0 0 0 0

S 2 0 0

U 2 5 202 252 302 352 402

v 22 0 0

Comparison of output to theory

A plot of displacement versus time, as calculated by SWIS, for the above input file is shown in
Figure 8b. SWIS calculates a waveform with a shape and velocity close to that of the analytical
solution. As in the case of the one-dimensional strain example, it is expected that refining the input
mesh and decreasing the time step could further improve the resulits.
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Figure 8. Comparison of analytical and SWIS waveforms calculated for example 2.
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Figure 9. Damping effects on beam. Plots use the same vertical
scale (dx = 0.05 m; dt = 0.005 s).

Applying a damping fictor again removes much of the oscillations (Fig. 9). A factor of 0.2,
however, already seems to modify the solution in that the waveform is no longer a square wave.
Increasing the damping factor from 0.2 to 0.4 removes more of the high frequency components, but
resultsinonly a small change in the solution. For these damping factors, little ornoreductionis noticed
in the amplitudes or the wave velocities.

Example 3: Lamb’s problem in two-dimensional Cartesian coordinates

The third example treated the two-dimensional Lamb’s problem, a vertical point load applied
impulsively in the plane of the grid (Fig. 10). The results from this example were compared to the
waveforms generated by other computing schemes.
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Figure 10. Example 3, geometry of
Lamb's problem.

Input file

No-displacement constraints were applied to the vertical sides of this mesh so that the waves would
reflect off of the sides. To compare the solution from SWIS to other models (Kuhn 1988, p. 1112), the
following parameters were used:

time step (Af): DT =2 (ms)

ending time: TMAX = 400 (ms)
density (p): DENS = 1.0 (Mg/m®)
P-wave velocity (c;): VP = 1.00 (km/s)
S-wave velocity (c): VS8(1) = 0.60 (km/s)
impulse force (P): VSPEC(2,1) = 1.0 (N).

For this problem, SWIS was run with several input files to observe the effect of the damping factor
and to get information for different types of plots. For all of the input files, however, the mesh used
was a two-dimensional grid with rectangular elements, each 3 by 3 m. The mesh had 70 elements in
each direction, and had a total of 5041 nodes. A vertical force was applied at the left upper corner of
the mesh (node 4971) and the vertical sides of the grid were constrained so that these nodes had no
horizontal movement (Fig. 11).

The file shown below was run to obtain information for a contour plot. For every 10 time steps (20
ms), data were recorded for 15 strings of nodes (line 17 of the input file), each string containing 15
nodes (lines 18-32). The damping factor in this run is 0.2 (last entry in line 10) (entries correspond to
Appendix A).

8

4971 e o o o 5041

° [ ] ] . [ o o o o L4 L4
[ ] ® [ ] [ ] ® L ] ) [ ] [ ] [ L] ]
e ¢ 0 o
1 ¢ o o O 71

Figure 11. Finite element mesh used for Lamb’s problem.
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Entry Line
A 1 Lamb’s problem, dr=2 ms, max=400 ms
B 2 2 2 0 0
Cc 5 2 2 0 400
D 4  eachelement 3 x3m,total grid 210X 210 m
E 5 7 70 0 2 4 0 0 0 0 0 0
F 6 0 210 210 -210 0 0 210 0
G 7 0
I 8 0
K 9 1
L 10 1 1.00 1.0 06 02
M 1 0
o 12 3
P 13 1 10 0.0 00 00 6 71
14 71 10 00 00 00 70 71
15 4971 10 0.0 10 00 O 1
R 16 0 0 0 0
s 17 15 10
T 18 4971 14 5
19 4616 14 5
20 4261 14 5
21 3906 14 5
22 3551 14 5
23 3196 14 5
24 2841 14 5
25 2486 14 5
26 2131 14 5
21 1776 14 5
28 1421 14 5
29 1066 14 5
30 711 14 5
31 356 14 5
32 1 14 5
U 33 0
v 34 0 0
Discussion of outpus

To evaluate the results, horizontal and vertical displacements and velocities were plotted against
time (Fig. 12 and 13) and contour plots of the displacements (Fig. 14) were produced. ‘The range and
depth scales for Figures 12 through 14 were chosen to match those of Kuhn's (1985) figures. It is
important to note that the plots in Figure 14 may contain some artifacts attributable to the automatic
contouring algorithm. For example, the contour plot of the horizontal displacement at 80 ms (Fig.
14al) indicates zero displacement at about 108 m. This particular contour line is not part of the wave
front, but a result of the automatic smoothing in the contouring algorithm. Despite the artifacts,
however, it is relatively easy to identify the wavefronts in the contour plots. The contour lines of
interest are grouped closely to each other, and compose the *“steep” portions of the mapping.

The plots of horizontal and vertical displacement in Figure 12 show the disturbance propagating
through the material. Since the wave velocities for the material are known, it is possible to determine
the arrival of each wave front. For example, on the 130-m trace of horizontal displacements in Figure
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Figure 12. Horizontal and vertical surface displacements vs time for example 3. All plots use the same vertical scale
(dx = 3m; dt = 2 ms).
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Figure 13, Horizontal and vertical surface velocities
vs time for example 3 (dx = I m; dt = 2 ms; damping
=0.2).

12a, a disturbance arrives at approximateiy 180 ms. This corresponds to a velocity of 1 km/s, and
implies that the disturbance is a pressure wave. A second wave front reaches the 180-m range at
approximately 300 ms, has a velocity of about 0.6 km/s, and could be either the shearor Rayleigh wave,
Figure 13, a plot of horizontal and vertical surface velocities against time, also shows the propagation
of the three waves. Finally, notice that the waves are non-dispersive. This agrees with theory, since
the example models a non-layered half-space.

The Nyquist frequency, or the highest frequency that can be monitored owing to the sampling time
step, is fy = 1/(2At) = 1/(0.004 s) = 250 Hz. From Figure 12, the period of the Rayleigh wave is
approximately 45 ms, and corresponds to adominant frequency of 22 Hz. This is an orderof magnitude
smaller than the Nyquist frequency, and so it is reasonable to expect that the Rayleigh wave is well
represented in the plot.

The displacement centours in Figure 14 yield results consistent with theory. Firsi, there are no
horizontal displacements directly beneath the source (x = 0-m axis), a constraint set in the input file.
Disturbances at the depths of 80 and 160 m are observed on the x =0 axis of the vertical displacement
contour plots at 80 and 160 ms respectively. These disturbances traveled at a rate of 1 km/s, and
probably correspond to the pressure wave. The second disturbance, the combined effect of the shear
and Rayleigh waves, is observed near the range of 48 m on the 80-ms plot and at about 96 m on the
160-m:s plot. Finally, the displacement magnitudes, especially in the horizontal displacement contour
plots, fall away to zero with increase in depth and indicate the presence of a Rayleigh wave.

Since the compressional energy and shear energy are proportional to the squares of the divergence
and curl of displacement, respectively (Dougherty and Stephen 1987, p. 242), contour plots of the
divergence and curl were created to better observe the arrival of the various wavefronts at t = 80 and
160 ms. The equations used to find divergence and curl are given in Appendix B.

The contour plots of the divergence and curl facilitate observation of the wave fronts. The
divergence contour plots show the pressure wave front as being almost spherical. Disturbances from
shear waves and surface waves are present on the curl contour plots, but it is difficult to distinguish
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Figure 14 (cont'd).
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between the two waves at the surface of the material since the wave speeds are almost equal. Atadepth

greater than 18 m, however, the Rayleigh wave displacements fall away, and only the shear wave
remains.

Computation time

On the ILLIAC computer, Frazier (1974, p. 65) estimated that the calculations were processed that
the rate of 0.4 ms per two-dimensional element per numerical time step. With 200 time steps, and 4500
elements (5041 nodes), each of the runs took approximately 30 minutes of real time on a Masscomp

5550, a 32-bit computer running at 20 MHz. At this rate, the computer processes at approximately 1.8
ms per element per numerical time step.

Damping factor

Frazier, when using SWIS, used different damping factors for the longitudinal and transverse
waves. It is not apparent, however, how he specified the two factors in the input file as our version of
the code does not allow this option. At this point, the magnitude required to reduce only the high
frequency noise resulting from numerical dispersion has not yet been determined. A value of 0.2 does
not seem sufficient because the source wave oscillates much more than what has been observed inboth
field work and other mathematical models. Damping factors . .10 0.4 and 0.6 reduced the amount of
oscillation, but also damped the results. Finally, a value of 0.8 caused the disturbance to die out almost

immediately.
Comparison with other models

Kuhn (1985) also conducted a study of Lamb’s problem in two dimensions. He used the same
material parameters and numerically integrated the analytical solution. In his work, however, Kuhn
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Figure 15. Horizontal and vertical ve-
locities (m/s) calculated by Kuhn (after
Kuhn 1985, p. 1114, his Fig. 6a).

Figure 16.Verticaldisplacementtime history calcu-

lated by Frazier (after Frazier 1974, p. 67, his Fig.
4.2), damping = 0.8.
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used a different approximation for the S FRayleigh

impulse force, solved the problem in cy- 1

lindrical coordinates and used a mildly — u, (0,1
viscoelastic material for his half-space. Time

These results are shown in Figure 15,

Kuhn’s figure shows surface velocities,

and contains two records of 16 traces

each, with ranges varying from 0-180m.

The middle column of numbers repre-

'P<——-u

sents gain, which is constant along each = —— ug (1,0,1)
trace, and allows the comparison of abso- Time

lute amplitudes between different offset ) L

traces. Figure 17. Horizontal and vertical displacements calcu-

In all of his calculations, Kuhn used lated by Lamb (after Graff 1975, p. 369, his Fig. 6.21).
only one source function, which had a
dominant frequency of about 20 Hz (Kuhn 1985, p. 1108). Because he solves Lamb’s problem by
numerically computing the analytic integral solution, his waveforms are much cleaner and it is easier
to distinguish between the different waves. It is difficult to see the similarities between our solution
(Fig. 13) and Kuhn’s (Fig. 15) because the finite element results contain much noise, resulting from
numerical dispersion. However, the waves arrive at approximately the same time, and the initial forms
of the waves are similar.

Frazier (1974, pp. 65-74) used Lamb’s problem in a two-dimensional Cartesian coordinate system
to evaluate the SWIS code written for the ILLIAC computer. As mentioned in the section above,
Frazier was able to specify different damping factors for the various waves. He also investigated the
effectiveness of transmitting boundary conditions, an option that is not available on our version of
SWIS. Finally, Frazier used different parameters for his calculations, including a different material,
smaller time and space steps, and a different force. Since the parameters are so different from those
in our model, our comparison is limited to the form of the displacements (Fig. 16).

As a final comparison, we considered the calculations of Lamb (Graff 1985, p. 369). In his analysis
of the half-space problem, he used a line loading with a time variation of

Z(r)=—=
12412

where T is a constant. If T is small, Z(¢) describes a sharp impulse. Lamb’s results for the horizontal
and vertical surface displacements from the above loading are shown in Figure 17. The time and
amplitude scales are not included in this figure, but the first disturbance shows the amrival of a P-wave,
the second corresponds to the S-wave, and the major response is ascribable to the arrival of the
Rayleigh wave.
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APPENDIX A: FORMAT FOR INPUT FILE ulSin

Listing

A.HED

B.NDIMT  NDENT MAPXY NFOUR
C.NDBYDT DT TMIN TMAX
D.GRIDH

E.NEI NEJ] NEK MAPYZ NBNODES IS IS KS IG JG KG
F.((YGRID(NDIM,NBN)NDIM=1,NDIMT),NBN=1,NBNODES)
G.NNCRDC (if NNCRDC=0, goto 1)
H. for NC=1 to NNCRDC:

NODEC(NC) (Y(INC),I=1,3) (DELY(INC)I=1,3) NANCRD(NC) IANCRD(NC)
1. NENNC (if NENNC=0, go to K)
J. for NC=1,NENNC:

NELN(NC) (NODEE(N,NC),N=1 NNET) NAEL(NC) IAEL(NC) IANE(NC)
K.NMAT
L. for N=1 NMAT:

MAT DENS(MAT) VP(MAT) VS(MAT) DAMP(MAT)
M. NEMATC (if NEMATC=0, go to 0)
N. for NC=1,NEMATC:

NELM(NC) NEMAT(NC) NAEMAT(NC) IAEMAT(NC)
0. NNBCC (if NNBCC=0, go to Q)
P, for NC=1, NNBCC (if NODEB(NC)>0, go to R)

NODEB(NC) NBTYPE(NC) (VSPEC(,NC),I=1,3) NANBC(NC) IANBC(NC)
Q.(BCDIR(NCOMP,NAXIS,NC),NCOMP=1,3) NAX1S=1,2)

R.INTPRT INTPG INTPNV INTPEV
S.NPLTNL INTPNL (if either=0, go to U)
T. for NL=1, NPLTNL:

NDLN(NL) NANLN(NL) IANLN(NL)
U.NTHPTS, (NNPRT(I),I=1,NTHPTS)
V.NTHELM NEPRT(I),I=1 NTHELM

Definition of entries

Entry formats are noted in parentheses (A = character string; I = integer; and E = exponential
format).

A.HED
(A) A character string used to describe the problem; to be used as a heading on output. An example
is
Input file for uniform material-2D with point source at surface.
Besuretoleaveaspaceasthefirstentry sothe firstletter doesn’t get read as a carriage control character.

B.NDIMT NDFNT MAPXY NFOUR
NDIMT: (I5) the number of spatial dimensions (1, 2 or 3).
NDENT: (I5) the number of degrees of freedom per node.
MAPXY: (I5) designates the type of spatial operator; choices are as follows:
For uniform, rectilinear grid in Cartesian coordinates, MAPXY =0.
For non-uniform, skewed grid in Cartesian coordinates, MAPXY = 1.
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For non-uniform, skewed grid in Cartesian coordinates, and to store stresses for non-linear
constitutive, MAPXY =2,
For cylindrical coordinates (r,z) with harmonic interpolation in azimuth, MAPXY =5.
NFOUR: (I5) Fourier azimuthal order in cylindrical coordinates.
If MAPXY=5, NFOUR = 0.

C.NDBYDT DT TMIN TMAX
NDBYDT: (I5) the number of time derivatives in the partial differential equation:
For static problem, NDBYDT=0.
For diffusion, NDBYDT=1.
For wave propagation, NDBYDT=2.
DT: (F10.4) grid size intime. DT should be less than the space grid size divided by the longitudinal
wave (P-wave) velocity.
TMIN: (F10.4) starting time.
TMAX: (F10.4) ending time (number of time increments = TMAX/DT).

D.GRIDH
(A) Adescription of the grid generation. As with HED, leave a space for the carriage control character.
An example for an entry is:

Regular grid, each element 10 m x 10 m, 7 km vertical by 10 km horizontal.

E.NEI NEJ] NEK MAPYZ NBNODES IS A KS IG JG KG
NETI: (I5) number of elements along the I-direction of a block of elements.
NEJ: (I5) number of elements along the J-direction of a block of elements.
NEK: (I5) number of elements along the K-direction of a block of elements.
MAPYZ: (15) designates the mapping from the curvilinear problem,
For identity mapping, MAPYZ =0."
For bi-quadratic mapping, MAPYZ = 2.
For cylindrical coordinate mapping, MAPYZ =3.
For spherical coordinate mapping, MAPYZ =4.
NBNODES: (I5) number of nodes that are specified along exterior comers of the grid (NBNODES
=4 is a typical entry).
IS, JS, KS: (I5) starting numbers for expanding the grid size at 10% per zone. Grid elements less
than IS, JS and KS are progressively expanded.
IG, JG, KG: (I5) starting numbers for expanding the grid size at 10% per zone. Grid elements
greater than IG, JG and KG are progressively expanded.

F.((YGRID(NDIM NBN)NDIM=1 NDIMT)NBN=1 NBNODES)
YGRID(NDIM,NBN): (F10.4) coordinates of the nodes at the exterior corners of the grid, specified
in the order:
For 10, Jmins Kmine NBN =
For Iy Jmins Kipine NBN =
For I i, Jnax Kimie NBN
For I o s Jnaxs Kmin» NBN =

min?

For I pins Jmin» Kimax NBN

* MAPYZ = 0 is not operational; use MAPYZ = 2 for identity mapping.
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For 1,2 Jins Kinax» NBN = 6.

For Iy Jinaxr Kax» NBN =7,

For I, Jnaxs Knax» NBN = 8.

Supply NBN’s depending on the dimensionality of the problem:

For a one-dimensional problem, NBN = 1-2,

For a two-dimensional problem, NBN = -4,

For a three-dimensional probiem, NBN = 1~8.
For a two-dimensional problem, 5000 units along the top and 6000 m deep, an entry could be (the
numbering used for generating the grid need not align with the coordinate axes, Y1,Y2,Y3):

00 -60000 50000 -60000 00 00 5000.0 0.0
Forcylindrical coordinates, enter the radius first, and then the angle in radians. To specify a full circle
(2I1 radians) with radius of 10, the entry would be:

0 0 10 0 0 6.2832 10 6.2832

G.NNCRDC

(I5) number of lines (sequences) of data used to supersede noae coordinates. If NNCRD =0, skip
toentry /,

H.NODEC(NC) Y(INC) (DELY(INC),1=13) NANCRD(NC) IANCRD(NC)

OPTIONAL. Specify node sequence only if NNCRDC>0!

Complete for NC = 1 to NNCRDC:

NODEC(NC): (IS) first node number of sequence on line NC.

Y(ILNC),I = 1,3): (3F10.4) coordinates of node number NODEC(NC).

(DELY(I,NC),I = 1,3): (3F10.4) increment to be added to the node coordinates for generating
additional nodes in the sequence.

NANCRD(NC): (I5) number of additional nodes in sequence NC.

IANCRD(NC): (I5) increment to be added to the node numbers to identify subsequent nodes in
sequence NC.

I.NENNC

(I5) number of sequences (lines) of dataused to supersede node numbers associated with individual
elements. SET NENNC = 0 and go to entry K!

J.NELN(NC) NODEE(N.NC) NAEL(NC) IAEL(NC) IANE(NC)
If NENNC = 0, do not enter values. Currently, the code only reads, and does not process these
variables.

K. NMAT
(I5) number of materials being specified. 1 SNMAT <9.

L.MAT  DENS(MAT) VP(MAT) VS(MAT) DAMP(MAT)

Specify properties for each material, N = 1 to NMAT.

MAT: (I5) material number, 1 SMAT <9.

JENS(MAT): (F10.4) mass density for material number MAT.

VP(MAT): (F10.4) P-wave velocity for material number MAT.

VS(MAT): (F10.4) S-wave velocity for material number MAT.

DAMP(MAT): (F10.8) dimensionless damping coefficient to suppress high-frequency amplitudes
from numerical dispersion.
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M.NEMATC
(I5) number of assignment sequences; assigns material numbers to elements. NEMATC=0 for a
uniform material. If NEMATC = 0, skip to entry O.

N.NELM(NC) NEMAT(NC) NAEMAT(NC) TAEMAT(NC)
Do not enter values if NEMATC = 0 (uniform material). Enter values for NC = 1 to NEMATC.
NELM(NC): (I10) first element in sequence NC.
NEMAT(NC): (I110) material number for sequence NC.
NAEMAT(NC): (110) number of additional elements in sequence NC.
IAEMAT(NC): (I10) increment in element number for identifying subsequent elements in the
sequence.

O.NNBCC
(I5) number of sequences used to constrain nodes. The number of different “boundary conditions,”
such as applied forces or displacements, or both. If NNBCC = 0, go to entry Q.

P.NODEB(NC) NBTYPE(NC)  VSPEC(INC)lI=13) NANBC(NC) IANBC(NC)

Used to specify constraints; enter values for NC=1 to NNBCC,

NODEB(NC): (110) first node in sequence NC. To apply a rotation to a node, enter the negative
of the node number.

NBTYPE(NC): (110) multi-digit constraint code for interpreting components of the values
specified by VSPEC(I,NC). The ones digit of NBTYPE pertains toI = NDFNT; the tens digit pertains
to I = NDFNT-1, etc. The individual digits are interpreted as follows:

0: VSPEC is an applied force.
1: VSPEC is an applied displacement.

Thus, for NDFNT =2, NBTYPE = 00010 indicates:
VSPEC(1,NC) = displaceinent assigned to component #1.
VSPEC(2,NC) = force applied to component #2.

Whereas, for NDENT = 3, NBTYPE = 00010 indicates:
VSPEC(1,NC) = force applied to component #1.
VSPEC(2,NC) = displacement assigned to component #2.
VSPEC(3,NC) = force applied to component #3.

(VSPEC(IL,NC),I = 1,3): (3F10.4) the value for the Ith component of the force or displacement (as
specified by NBTYPE).

TANBC(NC): (110) increment in node number for the subsequent nodes.

If NODEB >0, go to entry R.

Q. (BCDIR(NCOMP NAXISNC), NCOMP=1,3), NAXIS=1,2)
(F10.4) used to specify rotations, but not fully operational; vectors to specify rotated directions for
degree of freedom NCOMP with respect to axis NAXIS.

R.INTPRT INTPG  INTPNV  INTPEV

Used to specify print control. Set the value = 0 to suppress the plot.

INTPRT: (IS) interval between time steps for printing computed results to unit 16, file ‘ul6out’.
Set INTPRT < 0 to plot intermediate values.

INTPG: (I5) interval between time steps for plotting deformed grid to unit 10, file ‘u10g’. Set
INTPG < Q to plot only the undeformed grid.

INTPNV: (I5) interval between time steps for plotting node vectors to unit 11, file ‘ullvn’,

INTPEYV: (I5) interval between time steps for plotting element vectors to unit 12, file ‘ui2ve’.
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S.NPLTNL  INTPNL
Plot along specified lines of nodes (sends output to unit 13, file ‘u13In’ and unit 14, file ‘ul4div’).
NPLTNL: (I5) number of node lines (set NPLTNL = 0 to suppress plots).
INTPNL: (15) interval between time steps (set INTPNL = 0 to suppress plots).
If either NPLTNL or INTPNL =0, gotoentry U.

T.NDLN(NL) NANLN(NL) IANLN(NL)

Specify lines of nodes to plot displacement; enter values for NL = 1, NPLTNL. Donot enter values
if NPLTNL = 0.

NDLN(NL): (110) first node number in the line NL.

NANLN(NL): (110) number of additional nodes in the line.

TANLN(NL): (110) increment in node number along the line.

U.NTHPTS, (NNPRT(1), I = 1. NTHPTS)
Used to plot time histories of node displacement to unit 8, file ‘u8hn’.
NTHPTS: (I110) number of nodes for which time histories are to be plotted.

(NNPRT(I),I = 1,NTHPTS): (110) node number for plot history. No entries are needed if
NTHPTS =0.

V.NTHELM  (NEPRI(I),! = | NTHELM)

Used to plot time histories of element stress and displacement to unit 9, file ‘uShe’.

NTHELM: (110) number of elements for which time histories are to be plotted.

(NEPRT(),I = 1,NTHELM): (110) element number for plot history. No entries are needed if
NTHELM =0.

27




APPENDIX B: CALCULATION OF DIVERGENCE AND CURL

SWIS was modified so that the divergence and curl would be calculated for a two-dimensional
problem in rectangular coordinates. The following discussion applies to this specific case only.
For the two-dimensional case, divergence and curl are defined by:

divergence (x) = duy , dup
ox oy

curl (x) = Qﬁ - ?.'.‘.1.
ox dy
where x = position
u, = displacement in x-direction
u, = displacement in y-direction.

The divergence and curl were calculated using finite differences. The values for the corner nodes
were calculated using forward differences for both directions; edge node values resulted from a
forward diff..rence for the direction perpendicular to the edge and a central difference along the edge;
and values for nodes in the middle of the mesh were calculated using central differences in both
directions.

In general, the forward and central differences for a partial derivative are given by (Abramowitz
and Stegun 1972):

Forward:

dfo, 0 =[f1.o-fo.o] + 0(n?)
ox h |

Central:

90,0 =[f1.1 -t i, 'f—l.-l] + 0o#2)
ox 4h

where h is the distance between the sampling points, andf; ; is the value of the function at the (ith, jth)
sampling point. These finite difference formulas use equally spaced sampling points, as shown in
Figure B1. Fora grid with non-uniform spacing, the difference in coordinates must be used instead of
the value. 4.

(-1,1 ‘ ° (1.1)
00} 1.0
———H—
('1-'1Y .(1v'1)
a. Forward time dif- b.Centralfinitedifference
ference sampling (1wo sampling (four points).
points).

Figure B1. Sampling points for finite difference formulae.
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Nine different sets of divergence and curl formulae were: used for the two-dimensional, rectangular
mesh. Each of the four comer nodes required a set of formulae, as did the nodes on each of the four
sides of the mesh. The final set was written for the nodes in the center of the mesh.

For the following equations, variable definitions are given as:

nn: node number

nei: number of elements in the x-direction of the mesh
diver(nn): divergence at node nn

curl(nn): curl at node nn

disp(i,nn): displacement in the ith direction of node nn
ynode(i,nn): coordinate in the ith direction of node nn

Node locations for the following formulae are indicated on Figure B2,

'u\f Vil /IV

Vi—>»1 X e V11

/ ! ™

Figure B2. Node locations for finite difference formulae (I—
lower left corner; ll—lower right corner; Ill—upper left cor-
ner; IV—upper right corner; V—lower edge of mesh; Vi—left
edge of mesh; VII—right edge of mesh; VIII—upper edge of
mesh; IX—middle of mesh).

I. Bottom left comner [nn=1]:

diver (nn) = [disp(1, nn+1)—disp(1, nn)} . [disp(2, nn+nei+1) ~disp(2, nn)]

" Tynode(1, nn+1)— ynode(1, nn)] ~ [ynode(2, nn+nei+1) ~ ynode(2, nn))
(disp(2,nn+nei+1) - disp(2, nm)]  {disp(1, nn+1) - disp(1, nn)]
[ynode(1, nn+1) — ynode(1,nn)]  {ynode(2, nn+nei+1) — ynode(2,nn)}

curl (nn) =

11. Bottom right comer [nn = nei+1]:

[disp(1, nn)—disp(1, nn-1)) + [disp(2, nn+nei+1) - disp(2, nn)}

diver (nn) = f el nm)~ynode(1, nn-D)] T [ynode(, nmenei+1) = ynode(z, nm]
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[disp(2, nntnei+1) — disp(2, nn)] _ [disp(1, nn) - disp(1, nn—1)}

curl (nn) =

[ynode(1, nn) - ynode(l, nn-1)]  [ynode(2, nn+nei+1) — ynode(2, n.7)]

IIL Top left comner [nr = nei * (nei + 1) + 1):

[disp(1, nn+1) ~ disp(1, nn)} + [disp(2, nn) —~ disp(2, nn-nei-1))

diver (nn) = [ynode(1, nn+1) — ynode(1, nn)] ~ [ynode(2, nn) — ynode(2, nn-nei-1)}

[disp(2, nn) ~ disp(2, nn-nei-1)] _ [disp(1, nn+1) — disp(1, nn)]
[ynode(l, nn+1) — ynode(l, nn)]  {ynode(2, nn) — ynode(2, nn-nei-1)]

curl (nn) =

iV. Top right comer [nn = (nei + 1) *nei + 1)):

[disp(1, nn) — disp(}. nn-1)] [disp(2, nn) ~ disp(2, nn—nei-1)]

diver (nn) = £ node(T, am) = ynode(1, D)} [ynode(2, nn) — ynode(2, nn-nei-1)]

[disp(2, nn) -- disp(2, nn-nei-1)] _ [disp(1, nn) - disp(1, nn~1)]
{ynode(1, nn) ~ ynode(1, nn-1)]  [ynode(2, nn) ~ ynode(2, nn—tei-1)]

curl (nn) =

V. Nodes located on bottom edge of mesh [1 < nn < (nei + 1)]:

diver (nn) = [disp(1, nn+1) — disp(1, nn)] [disp(1, nn) — disp(1, nn-1)]
" 2+ [ynode(1, nn+1) - ynode(1, nn)] ~ 2+ [ynode(1, nn) — ynode(1, nn-1)]
[disp(2, nn+nei+1) — disp(2, nn)}
{ynode(2, nntnei+1) — ynode(2, nn)]
curl (nn) = 2+ [disp(2, nntnei+1) — disp(2, nn)] {disp(1, nn+1) - disp(1, nn-1)]

[ynode(1, nn+1) ~ ynode(1, nn~1)] ~ 2+ [ynode(2, nn+nei+1) - ynode(2, nn)]

VI. Nodes located on the left edge of the mesh {mod(nn, nei + 1) = 1]:

[disp(1, nn+1) ~ disp(1, nn)} [disp(2, nn+nei+1) — disp(2, nn)]
[ynode(1, nn+1) ~ ynode(l, nn)] 2+ {ynode(2, nn+nei+1) ~ ynode(2, nn))

diver (nn) =

[disp(2, nn) — disp(2, nn~-nei-1)]
2* [ynode(2, nn) — ynode(2, nn—nei-1)}

[disp(2, nn+nei+1) — disp(2, nn-nei-1)] - 24 [disp(1, nn+1) - disp(1, nn)]

1 =
curl (nn) 2+ [ynode(1, nn+1)— ynode(1, nn)]  [ynode(2, nn+nei+1) — ynode(2, nn-nei-1)}

VIIL Nodes located on the right edge of the mesh [mod(nn, nei + 1) = 0]

(disp(1, nn) — disp(1, nn-1)] {disp(2, nn+nei+1) — disp(2, nn))
[ynode(1, nn) — ynode(1, nn—1)] = 2+ [ynode(2, nn +nei+1) - ynode(2, nn))

diver (nn) =

[disp(2, nn) — disp(2, nn-nei~1)]
2+ {ynode(2, nn) ~ ynode(2, nn-nei-1))
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curl (nn) = [disp(2, nn+nei+1) - disp(2, nn-nei-1)) a 2+ [disp(1, nn) - disp(1, nn-1)]
2x [ynode(1, nn) - ynode(1, nn—1)] {ynode(2, nn +nei+1) — ynode(2, nn-nei-1)]

VIIL Nodes located on the top edge of the mesh [nei * (nei + 1) + 1 < nn < (nei + 1)?}

[disp(1, nn+1) — disp(1, nn)] [disp(1, nn) — disp(1, nn-1)]
2+ [ynode(1, nn+1) - ynode(1, nn)) * 2 {ynode(1, nn) — ynode(1, nn-1))

diver (nn) =

[disp(2, nn) — disp(2, nn-nei-1)]
{ynode(2, nn) — ynode(2, nn-nei-1)]

+

2x [disp(2, nn) - disp(2, nn-nei-1)] [disp(1, nn+1) — disp(1, nn-1)]
[ynode(1, an+1) — ynode(1, nn~1)] ~ 2x [ynode(2, nn) — ynode(2, nn-nei-1)}

curl (nn) =

IX. Nodes in the center of the mesh:

{disp(1, nn+nei+2) - disp(1, nn+nei)] {disp(1, nn—nei) — disp(1, nn~nei-2)]
2% [ynode(1, nn+nei+2) — ynode(1, nn+nei)) * 2% [ynode(l, nn—nei) — ynode(1, nn—nei-2)}

diver(nn) =

[disp(2, nn+nei+2) ~ disp(2, nn-nei)) [disp(2, nn+nei) - disp(2, nn-nei-2)]
* 24 Tynode(2, nn+nei+2) - ynode(2, nn-nen)) * 2« {ynode(2, nn+nei) - ynode(2, nn-nei-2)]

(disp(2, nn+nei+2) - disp(2, nn-nei)] [disp(2, nn+nei) - disp(2, nn-nei-2)]
~ 2% [ynode(1, nn+nei+2) - ynode(l, nn+nei)) + 2+ [{ynode(1, nn-nei) - ynode(l, nn-nei-2)]

curl (nn)

(disp(1, nn+nei+2) - disp(1, nn+nei)} [disp(1, nn-nei) - disp(1, nn-nei-2)}
= 2% [ynode(2, nn+nei+2) - ynode(2, nn—-nei)] ~ 2* {ynode(2, nn+nei) — ynode(2, nn-nei-2)]
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